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Abstract

The parallelization of numerical algorithms is required to run large scale simulations on
clusters of high performance servers. This paper presents a detailed approach paralleliz-
ing simulations based on the finite element method. The focus will be on the design of
the communicator class, which provides an easy to use interface to all communication
functions, that are required for the implementation of parallel linear algebra routines.
Benchmarks for a parallel conjugate gradient algorithm on different cluster machines
with Infiniband and Gigabit networking validate the parallelization approach.

1 Introduction
The aim of the project is to provide a user friendly C++ toolbox for the parallelization of
partial differential equation solvers based on the finite element method. The finite element
approach is very flexible in capturing complicated geometries of the simulation domain
using simple geometric shapes, the elements, but it also provides a natural parallelization
approach by evenly distributing the elements on the processing nodes, involved in the par-
allel computation. To minimize the communication between the processing nodes, a parti-
tioning strategy is necessary that minimizes the number of boundary nodes, that are shared
by multiple processors. This can be achieved using partitioning tools like METIS [1], that
automatically create optimal partitions based on the mesh connectivity information.
With the partitioning information of the elements, a one-to-one mapping of elements to pro-
cessors, and the mesh connectivity information it is possible to derive the complete com-
munication setup for parallel algorithms. Specifically, to construct parallel linear algebra
routines, it is necessary to communicate information that is located on the shared boundary
nodes. To make this communication transparent for the user of the toolbox a communicator
object is created, that provides three easy to use communication functions accumulate, dis-
tribute, and collect. The constructor of the communicator object needs only the global node
numbers, that are located on the current processing node. After construction all the relevant
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operations in parallel linear algebra can be constructed using the three basic communica-
tion functions. Chapter 2 gives details on how to use the communicator object and Chapter
3 gives some insight on the algorithms used to construct the internal data structures of the
communicator object. Chapter 4 discusses the extensible binary data format, that is used
to store all data, necessary for the finite element computation. Chapter 5 gives a detailed
example implementing a parallel conjugate gradient algorithm with preconditioning and
including some benchmark results validating the parallelization approach.

2 Communicator Class
The idea of the communicator object is to provide a single object to the user of the toolbox,
that can handle all communication, that is required for the parallelization of linear algebra
operations.

2.1 Class Definition
The communicator class is defined as a C++ template class. The template arguments are the
data type of the node index, typically int and the data type of the matrix and vector entries,
typically double.

communicator<int, double> com(con);

The code snippet above shows a typical instantiation of the communicator class. The con-
structor of the com object takes a vector of global node numbers con, derived from the
connectivity information, as input. Vectors of numerical values or node numbers are repre-
sented in the toolbox using the C++ Standard Template Library (STL) [7] vector template
class.

2.2 Accumulated and Distributed Vectors
For parallel computations it is important to distinguish between accumulated and dis-
tributed vectors. This distinction concerns only the numerical values of the vector entries
and not it’s size. Two of the three primary procedures of the communicator class implement
the conversion of a distributed vector to an accumulated vector and vice versa.
The procedure accumulate takes a distributed vector as input and converts it in place to
an accumulated vector. The accumulation process requires communication between the
processors participating in the parallel computation and is thus an expensive operation.

com.accumulate(b);

The code snippet implements the accumulation process on the vector b using the communi-
cator object com.
The procedure distribute takes an accumulated vector as input and converts it in place to a
distributed vector. The distribution process is local and does not require any communication
between processors.
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com.distribute(b);

The code snippet implements the distribution process on the vector b using the communi-
cator object com

2.3 Parallel Scalar Product
The third procedure of the communicator class, collect, implements the distribution of nu-
merical data values to all processors, to calculate sums over the data values. The procedure
is typically used in the parallel calculation of scalar products, to combine the locally com-
puted partial sums into the final answer.
The parallel scalar product requires some attention on the vector types used in the sequential
scalar product routines. For the result to be correct after calling the collect procedure, one
vector in the scalar product has to be distributed, the other accumulated. If this is not the
case one or the other has to be converted using the accumulate or distribute procedure.

scalar_product(x, y, alpha);
com.collect(alpha);

The code above implements a parallel scalar product using a distributed vector x and an
accumulated vector y in a sequential scalar product routine. The result of the local scalar
product is stored in alpha and used as input to the collect procedure. On return the output
parameter alpha contains the full scalar product.

3 Algorithmic Details
Communicating the boundary information between different computational nodes, see Fig-
ure 1 and Figure 2, requires the setup of various data structures inside the communicator
class. One major goal in the design of the communicator class is scalability of the com-
munication setup. With this goal in mind only algorithms of almost linear complexity are
used inside the communicator class. The description is partitioned into algorithms required
for deriving the data structures for the accumulation process and for the derivation of the
distribution process.

3.1 Sorting Algorithms
One interesting point turned out to be the fact, that most algorithmic problems in the com-
municator setup can be solved using integer sorting algorithms. Although the Standard
Template Library (STL) provides a powerful sort function, a binary integer sorting tech-
nique is used, based on the radix exchange sort [2], that achieves higher performance for
the test examples, than the STL sort function. The binary integer sorting technique also
has the advantage, that it works in place and does not require any temporary storage, ex-
cept for some stack space, that is less than 4 KB for all relevant situations. Aside from
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Figure 1: Finite element mesh distributed to four processing nodes with global element and
node numbers.
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Figure 2: Partition vector for four processing nodes mapping every finite element to the
associated processing node.
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Figure 3: Mesh connectivity information for all four processing nodes. Every triple of
global node numbers defines a triangle.
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Figure 4: Union of global node numbers over the mesh connectivity information on the left
and the corresponding local node numbers on the right.
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Figure 5: Global intersection data structure using global node numbers on the left and the
corresponding local node numbers on the right.

sorting an integer sequence in ascending order, also in place Hilbert-order sorting is natu-
rally supported by the binary sorting technique, which can be used for a cache optimized
matrix-multiplication scheme [3].
The next two sections discuss the algorithms in the constructor of the communicator class.

3.2 Accumulation
The single input to the constructor is a vector that represents the mapping of the local to
the global node numbers, see Figure 4. This vector is typically calculated as the union of
the mesh connectivity information on the current processor, see Figure 3. The ordering of
the global node numbers is arbitrary, but the mapping from local to global numbers must
be one-to-one. This is the only restriction on the input vector.
The setup for the accumulation process starts with sorting the global node numbers in as-
cending order. The permutation introduced in the local to global mapping is recorded in a
temporary vector of local node numbers. This sorting is required to have a unique definition
of node ordering on every processor. After the sorting process of the global nodes, every
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Figure 6: Count vectors on the left and displacement vectors on the right for the global
intersection data structure using four processing nodes.
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Figure 7: Complete global intersection data structure for processing node 1. On top the
count vector, in the middle the data vector and at the bottom the displacement vector

processor sends out his ordered sequence of global node numbers to every other proces-
sor participating in the parallel computation. After the completion of this communication
step, every processor has collected all sets of global node numbers. To calculate the shared
global nodes, every processor intersects his ordered set of global nodes, with the sets re-
ceived from the other processors. If there are n processors, then every processor calculates
n intersections. Globally n2 different intersections are calculated, thus the computational
load is evenly distributed. After the intersection process is complete the intersecting global
nodes, these are the nodes, that have to be exchanged between a pair of processors, are
mapped back to their local node numbers and stored in a flexible data structure, see Fig-
ure 7, using the three vectors rcom, the data vector, rcnt, the count vector and rdsp, the
displacement vector. The complete data structures for the global intersection are depicted
in Figure 5 and Figure 6.

vector<T> _rcom;
vector<T> _rcnt;
vector<T> _rdsp;

• rcom stores all the local node numbers that are used in the communication with n
processors.

• rcnt stores the number of local nodes to communicate with processor number i ∈
1, . . . , n.

• rdsp stores the displacements for accessing the local nodes for processor number
i ∈ 1, . . . , n.

The flexible data structure is directly used for packing the local node values into the send
buffer, for the data exchange using an all-to-all communication call [6], see Figure 8, and
for unpacking the receive buffer and accumulation back to the local node values.
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Figure 8: All-to-all communication pattern for the accumulation process using four process-
ing nodes.

vector<S> _rvec;
vector<S> _svec;

• rvec is the communication receive buffer for the node values to be received.

• svec is the communication send buffer for the node values to be sent out.

3.3 Distribution
The setup of the distribution process requires the number of processors, that share a single
global node. Only the actually present global nodes on a processor are relevant for the cal-
culation. The calculation can be done using a modified union function on the vector of all
shared local nodes, i.e. rcom, that also records the multiplicity of the elements in the union.
Since the locally present nodes are not included in the rcom vector, the calculated multi-
plicity is off by one. This can be easily fixed, and the reciprocal of the node multiplicity is
stored in the vector rsca with the associated local node number stored in rpos.

vector<T> _rpos;
vector<S> _rsca;

• rpos stores the local node numbers, that have to be scaled in the distribution process.

• rsca stores the reciprocal multiplicities, the scaling factors for the distribution pro-
cess.

3.4 Collection
The collection process requires the rcol vector as receive buffer in the collect procedure.
The collect procedure is implemented using one-to-all communication for data distribution
and a simple local accumulation of the data values, to calculate the sums. No additional
setup is required.
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vector<S> _rcol;

• rcol is the communication receive buffer for the collect procedure.

3.5 Formal Description
This section gives a formal description of the algorithms above. Most of the algorithmic
complexity can be captured using formal set operations, like unions and intersections of
node sets. To implement set operations efficiently it is required to have sorted node vectors,
typically in ascending order. With this prerequisite set union and intersection can be im-
plemented with linear complexity, accessing every node only once and in sequential order.
Furthermore the algorithms can be executed in place, not requiring any additional memory.

3.5.1 Accumulation

Let

Gp = (gp
i )Np

i=1 (1)

be the sequence of global node numbers located on the processor p ∈ {1, . . . , P}. P is
the total number of processors in the parallel computation and Np is the number of nodes
located on processor p. Define a permutation

Σp =
(

1 2 . . . Np

σp(1) σp(2) . . . σp(Np)

)
(2)

such that the sequence

Ĝp = (gp
σp(1), . . . , g

p
σp(Np)) (3)

is in ascending order. Define the concatenation of all node sequences

Ĝ = (Ĝ1, . . . , ĜP ) (4)

For every processor p ∈ {1, . . . , P} define the P subsequences

G̃p,q = Ĝp ∩ Ĝq = (gp
σp(χp,q(1)), . . . , g

p
σp(χp,q(Mp,q))) (5)

with q ∈ {1, . . . , P}. Here the intersection symbol means set intersection, without chang-
ing the order in the sequence of the nodes. The function χp,q : {1, . . . ,Mp,q} →
{1, . . . , Np} defines a map from the local node number in the intersecting sequence G̃p,q

to the local node number in the original sequence Ĝp The sequence of local intersecting
nodes on the processor p is defined as

Lp,q = (σp ◦ χp,q(1), . . . , σp ◦ χp,q(Mp,q)) (6)

These sequences define the local node numbers, that have to be communicated in the accu-
mulation process. Processor p sends the values of the local nodes Lp,q to all other proces-
sors q 6= p. The received node values are finally accumulated to the local values using the
same node sets Lp,q, due to the symmetry of the communication process.
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3.5.2 Distribution

Let

αs(r) :=

{
1, r = s

0, r 6= s
(7)

then the multiplicity of the local node s ∈ {1, . . . , Np} on processor p ∈ {1, . . . , P} is

Cp
s =

P∑
q=1

Mp,q∑
r=1

αs(Lp,q
r ) (8)

In the distribution process the value of the local node s on processor p is divided by Cp
s .

4 Extensible Binary Data Format
In this section the Extensible Binary Data Format (EBDF) will be introduced. Finite ele-
ment computations require a variety of different data structures. For example element con-
nectivity information, element to processor mappings for different numbers of processors,
coordinate data for the geometric nodes, info for Dirichlet nodes and values, an array of all
element matrices, and data for various initial and solution vectors.
Often input data is stored in text files, but parsing textual information is an expensive opera-
tion. This performance penalty is especially relevant for large data files. Binary data files on
the other hand provide high performance access to stored data. But it is necessary to care-
fully design the file format to enable painless data creation and transformation from other
formats using software packages like Mathematica and Matlab. In the parallel toolbox all
binary data files are stored in little-endian format.

4.1 Folder Concept
For an extensible data format it is necessary to have a container, that stores all data chunks.
Traditionally a single file is used for this purpose, but this requires specialized reading and
writing routines. To avoid this complexity in the parallel toolbox the container is a single
folder or directory.

4.2 Block Data
With the folder concept every piece of data of the finite element simulation can be stored
in a separate file. Now to have a unified concept for the storage of the pieces of data, only
arrays of a single data type are allowed in the data files. This is very convenient for read-
ing and writing the data, because the whole binary data block on the disk can be directly
mapped to an array or vector in memory. For this purpose the parallel toolbox provides the
routines binary read and binary write. Specialized routines for reading binary input files
in parallel are also provided for some data structures. As a further requirement all vectors
are C-style 0-based arrays. Index counting in the parallel toolbox always starts at 0!
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4.3 File Structure
Information listed below gives a detailed description of files, that are found in a typical
finite element simulations.

4.3.1 Header.bin

vector<int> hdr(8);

The header file stores common values for the finite element data structures.

int magic = hdr[0];
int version = hdr[1];
int gnumelem = hdr[2];
int elemsize = hdr[3];
int gnumnode = hdr[4];
int nodesize = hdr[5];
int gnumdir = hdr[6];
int dirsize = hdr[7];

The size of other data structures can be determined using the values in the header file. A
detailed description of the vales is listed below.

• magic is a magic number for file identification.

• version is the version of the header file.

• gnumelem is the global number of elements.

• elemsize is the number of geometric nodes per element for a uniform mesh.

• gnumnode is the global number of geometric nodes.

• nodesize is the dimension of the associated coordinate tuple of a node.

• gnumdir is the global number of Dirichlet nodes.

• dirsize is the dimension of the associated Dirichlet values.

4.3.2 Connection.bin

vector<int> con(gnumelem * elemsize);

The mesh connectivity information consists of elemsize-tuples of global node numbers for
all elements.
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4.3.3 Partitionp.bin

vector<int> par(gnumelem);

The partition information represents the mapping of an element to a processor. The ap-
pended number p in the filename denotes the number of processors, for which the partition
was created. This information is typically generated by the mesh partitioning tool METIS.

4.3.4 Element.bin

vector<double> ele(gnumelem * elemsize * elemsize);

The element matrices are stored as a sequence of small matrices of dimension elemsize.

4.3.5 Type.bin

vector<int> typ(gnumelem);

Material information for an element.

4.3.6 VectorB.bin

vector<double> b(gnumnode);

Right hand side for the finite element calculation.

4.3.7 VectorX.bin

vector<double> x(gnumnode);

Initial value for the finite element calculation.

4.3.8 Coordinate.bin

vector<double> coo(gnumnode * nodesize);

Coordinate tuples for the global nodes.

4.3.9 Dirichlet.bin

vector<int> dir(gnumdir);

Global node numbers for Dirichlet nodes.

4.3.10 Values.bin

vector<double> val(gnumdir * dirsize);

An array of multidimensional Dirichlet values.
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5 Parallel Conjugate Gradient Algorithm
To validate the usability of the communication class, a parallel conjugate gradient (CG)
algorithm with diagonal preconditioning [5] is used as a test case. As a performance opti-
mization the algorithm iterates on packed vectors, calculating the solution simultaneously
for multiple right hand sides.

5.1 Numerical Results
The finite element matrix for the example is derived from a 3D bunny heart simulation [4].
The overall size of the problem is 862515 nodes and 5082272 elements. The right hand
sides for the calculation are taken from the heart simulation. As a benchmark setup 512 CG
iterations with a packed vector representing four right hand sides are used.
The MegaFLOP rates are calculated only counting the operations for the matrix vector
product in the CG loop. One multiplication and one addition is counted for every non-zero
matrix element. Scalar products and the diagonal preconditioner are not included in the
instruction count.
Benchmark runs were carried out on the Opteron clusters kepler, pregl, and archimedes.
The kepler cluster uses an Infiniband interconnect and the two other Gigabit Ethernet net-
works. See Table 1 for the cluster node configuration.

Cluster CPU RAM Network

kepler 2x Opteron 248 2,2GHz 4GB DDR 1x Infiniband Interconnect
pregl 2x Opteron 248 2,2GHz 4GB DDR 1x Gigabit Ethernet

archimedes 2x Opteron 250 2,4GHz 4GB DDR 2x Gigabit Ethernet

Table 1: Cluster node configuration

NP kepler pregl archimedes

1 222.42 225.224 308.17
2 219.64 193.56 253.62
4 202.32 190.45 241.59
8 198.93 79.29 224.50

16 194.85 35.90 163.65
32 159.43 18.96 140.55

Table 2: MFLOP rates for cluster computers

The benchmark data was collected using the Sun N1 Grid Engine (SGE) [9] batch system
on the cluster computers, see Table 2. The SGE handles the resource allocation on the
cluster for different users. Although the computational resources are efficiently assigned,
the benchmark indicates that the allocation of the network resources is not optimal. This
results in a serious performance degradation observed on the pregl cluster.
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For 32 processors the kepler cluster with Infiniband interconnect is 8.5 times faster, than
the Gigabit Ethernet machine pregl. In this case Gigabit Ethernet provides only for up to
four processors reasonable performance scaling, for more processors there is a complete
stagnation.
The Infiniband machine only loses about 12.5% from the peak performance of one proces-
sor up to sixteen processors. With 32 processors the relative performance is still about 72%
of the peak performance of a single processor. In comparison 32 processors on the pregl
cluster deliver only about 8.5% of the single processor peak performance.
That the performance degradation is not solely caused by the Gigabit Ethernet network
shows the benchmark on the archimedes cluster. For eight processors the machine loses
about 27% from the single processor peak performance. Even with 32 processors it still
delivers 45% of the single processor peak performance.

5.2 Communicator Setup
The setup time for the communicator, that is the time for the construction of the communi-
cator object, is measured for 1− 32 processors. The timings are in milliseconds.

NP kepler pregl archimedes

1 55.9 70.3 54.7
2 47.6 78.1 66.4
4 35.5 87.9 86.9
8 29.9 98.6 91.3
16 27.4 102.8 95.2
32 34.5 676.6 622.9

Table 3: Timing for the construction of the communicator object in milliseconds.

The setup timings show a clear advantage for the Infiniband interconnect on the kepler
cluster. The timings for the Gigabit Ethernet clusters are consistent considering the 10%
performance advantage of the archimedes cluster over the pregl cluster.

6 Future Work
The parallel toolkit introduces a simple and effective framework for parallelization of basic
linear algebra routines. A conjugate gradient algorithm with simple diagonal precondition-
ing has been implemented as a simple performance benchmark. To make the toolkit more
useful more advanced preconditioners like algebraic multigrid will be investigated in the
future.
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